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ARSTRACT

Ulines (noruniform spatial distrvibutions in the genetic composition of a

poprlation in eguilibriam! ave often modeled by nonconstant solutions

——————

ul{x) & {9,1) of (D(x)u")' + hi{x,u) = 2, =-» < x < », where h satisfies

h({x,0) = h(x,1) = 0, and D 1is often taxen to be identically 1. The

functions D and h have interpretations i»n terms of mobility, carryina

capacity ard natural selection. We define clines as stable solutions
u{=*) = 0, ule) = 1, 2all past analyses of clines have consilerad

sarisfying =
1

N iz the favered state for large necgative x, and

. C s . 1
foyr large vositive x (j.e., 0 H{x,ul 3

th2 case when (say)
changes sign from neagative to

{ cositive as  x  increases from =2 to ®). In this paper, however, we assume

! *ha*t the state 0N s Favored for all x, alttonah both 7 and 1 are

s+ ahble as uniform states. A number of conditions are aiven which ensure i

sxi1stence ~f stahle clines, or tiheir aaloas in the bounied habita® rase.

! Tonditions are also given which ensure the nonexistence nf clines. The

concept € stability is with reference to the corresponiding nonlirear

f A1ffusion emuation, ant is usel in a special technical sease.

AMS (M0S) Subject Classifications: 92715, 932A10, 34815, 35K55.

¥ov Words: Clines, stability, population agenetics, ecology, subsolaticos,

selectior.,
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SIGNIFICANCE AND EXPLANATION

" The problem studied is in the area of differential equations; it models
the spatial distribution of the genetic composition of a population in a
heterogeneous environment, account being taken of migration and natural
selection effects. More generally, it models a distribution in the
composition of an ecological community. A number of conditions are given
which cuarantee the existence or nonexistence of a stable nonuniform
equilibrium distribution, which is known as a cline. Of special interest is ;
the case when two stable homogeneous distributions are possible; there may or

may not also exist a heterogeneous one.(
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Tve remronsibility for the wordina and views expressed in the descriptive
cimmary lies with MPZ, and not with the authors of this report.
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‘ CLINES INDUCED BY VARIABLE SELECTION
f AND MIGRATION

P. C. Fife and L. A. Peletier

1. Introduction.

Clines are nonuniform spatial distributions in the genetic composition cf
a population in equilibrium. They have been studied a great deal by
population geneticists (see for example {7, 9, 15, 16,

13}), often within the

context of the simple class of equations

d2

285 s(x)f(u) =0 , (1.1)
2
dx

in which u 1is a scalar variable representing some gene frequency, f a
selection pressure mechanism tending to drive the population to certain
preferred states, s a measure of the selective intensity, and the second
derivative of u a term designed to account for spatial migration.

Outside the context of population genetics, equation (1.1) has been used
in models designed to describe certain phenomena in ecology [12].

We suppose that £(0) = f{(1) = 0, so that u=0 and u =1 are
solutions of (1.1).

These solutions represent the situations where the gene

in gquestion is either entirely absent or everywhere present. We shall say

e

that u =0 (u= 1) is favored at the location x if

-

1
s(x) [o flwdu < n > 0) .

L e oy
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One reason for this terminolony is the fact that in the case when s is

constant, travellina waves of the corresponding nonlinear diffusion eguation

M F UL S £(u) (1.2)
always move in a direction so that at eac fivxe? x, u(x,t) tends towards the
favored state.

Another reason for this terminoleay 1s that 1t is consistent with the
notion of relative fitness in poprulation aenetics. In that context, the
derivation of (1.1) proceeds from a sinale~locus, two allele model (A and
a), with u the freguency of the a-allele. In the special case when the
fitnesses of the genotypes AA, 2a and aa are independent of population
“ensity and genotvpe-frequencies, and are denoted by 1 + Syqr 1, 1 + S,

respectively (s,, Sy, £ R), sf hecomes

sf(u) = ru(1 - u){(s1 * s,)u - 52} . r>0

and it is easilv verified that the state u =0 is "favored" in the above
sense if and only if sy > s,+ 1In this case, travelling waves tend to
eliminate allele a, and drive u to 0.

We define clines to be stable nonconstant solutions u(x) of (1.1). 1If

the domain .. - the bahitat - is the entire real line, we shall for
definiteness remiire that u(-®) = 0 and u(+®) = 1, ™ the other hand, if
L is a bounded interval: & = (-1.1), we reaquire Neumann (ux = N)

conditions at the endpoints and ul(1) > ul-1). The notion of stahility is
here to be understood with reaard to eqnatinn (1.2), The precise definition

nf stability to he used is critical, and we zhall explain it ar the end of




this section. The reason for including stability in the definition of a cline
stems from the fact that unstable solutions of (1.1) are not likely to reflect
anything seen in the natural world,

v

Past analyses of clines (3, 6~9, 15, 16, 19] have all been devoted to the

case when u =0 1is favored for large negative x and u 1 1is favored for

large positive x. 1In this paper we shall suppose that u 0 is favored

everywhere in the habitat:
. 1
s >0 in &£ and fO f(u)du < 0 ,

and we ask whether it is still possible for clines to exist. If s is
constant, the answer is no. For a bounded habitat this follows from [1], and
if I = R it follows from results in [10] and elsewhere. However, we shall
show that provided

(i) s(x) is allowed to vary in certain ways, and

(ii) the selection mechanism is bistable, i.e.
f'(0) <0 and f£f'(1) <0 ,

a cline can indeed exist. 1In terms of the example from population aenetics,
Fistabilitv means we are in the underdominant case, i.e., Sy > 0 and

s, > 0.

?
Raain in the nommlation aenetic context, (1.1) is derived under the

aecsy~rtions that the rn+al population Aensity is constant in space and time,

trat *he migration rate is likewise constant, that no drift (i.e., no

preferrad direcrion of migqratine)} is present in the latter, and that the
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relative fitnesses of the genotypes are constant. These restrictions,

however, can be dropped and (1.1) replaced by a more general equation. These
generalizations are examined in this paper. For example in sections & and 7,
we extend our analysis to allow for variable total density and migration rate
{but we continue to assume, for simplicity, that no drift is present), and
find that spatial variation in the carrying capacity of the environment and in
the migration rate may also be sufficient for the existence of a cline.

The biological picture we shall have in mind is the following. The
individuals of the three genotypes AA, RAa, aa operate under the same
migration rules: more specifically, there is an infinitesimal variance
(mobilitv) V{x) in the migration rate, common to all three types, and in all
ceses the drift is zero. [The effects of genotype~dependent migration were
studied in [14].] The carrying capacitv k of the environment is assume to
be, to first order, independent of the population's genetic composition, and
iz a given function k(x). When the relative fitnesses of the genotypes vary
in space, the selection term s(x)f{(u) should be replaced by some function

hix,u1). Nnder all these conditions, the appropriate generalization of (1.2)

is 1S, p.r4]

3 1 a 2 2
vt (x)kT (%) 2uy hix,u) . (1.3)
Jt 2 Ix ox
Vix)k (x)
Other miaration rules, such as given in [5, (1.20)] could be handled by

our technique; but the results obtained here suffice for the purpose of
*Tlustrating the eoffects of variable miaration and carrvina capacity.

We shall agive various sufficient conditions for the existence of clines:
tvpically they involve the statement that the function s, V, or X

experiences a sufficient drop over some finite zone in the habitat. However,

& e sl
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not only does the magnitude of the drop in this zone have to be large encunh;
but also the gradient of the function in question has to be steep enough over
part of this zc: . The function should remain relatively large over that part
of the habitat lying to the right of the zone, whereas its values to the left
are not so important. The intuitive role of this zone is that it separates
two communities, which are more or less in states u =0 and u =1
respectively. In the case when the function experiencing the drop is the
mobility V, the zone would clearly act as a barrier tending to isolate the
two communities, and so providing for their coexistence in different states,
Our results show that a similar variation in carrying capacity or strength of
selection can function eaqually well as a bharrier. Matano [13] has shown that
in higher dimensions, the shape of the habitat { 1is relevant to the
existence of clines, domains with narrow middle sections favoring their
existence throuah a type of barrier action.

We shall give a brief description of the results of the paper. The

function u will assume values only in the range 0 < u € 1. The following

| hypotheses on f and s will be made throughout.

. 2
A He: f e co(r0,11); £(0) = f(a) = f(1) = 0 for some
1 l
‘ ae (0,1); f£'(0) <0, £'(1) < 0; f(u) <0 on (0,a) , ;
' 1
‘, f{u) >0 on (a,1); and IO f(u)du < 0 .
H
. Remark: This last inequality means (since s > 0) that the state u = 0 is
{ favored for all x.
; ' H_: s is piecewise continuously differentiable on (I where . = R or
4' ) [_111];

inf(s(x):ix = 2} = s> 0.

-5
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Conditions for nonexistence in the unbounded habitat. As mentioned

before, it is well know that a ¢line cannot exist if s is constant., Nore

generally the followina holds. Let Y € (0,1) be defined by

A

f{u)du

‘a

.
o fluddu

-0

infls(x']

> ¥, then no cline exists. This condition is
suplel(x)

Theorem 1. If

sharp. Moreover, not anly must (inf s)/(sup s) be large enough, but s must
be an increasing function on some interval (Theoxem 2), and the variation of

s must be abrupt encugh:

* *
Theorem 3: Let s (%) = C‘(—w,M) and sE(x) = 5 (ex). Then there

exists an CO > 0 enecn that if 0 < ¢ « 50 and s(x) = se(x), no cline
exists.,

Conditions for existence in the unbounded habitat. Here we insert an

extra positive parameter * into (1.1):

,12

Fu .

—= + X s(x)ifu) =0 ., (1.4)

ax”
Let “(x,%) he any nonneqative piecewise continuously differentiable function
whick vanishes for Ix! > % and is chosen so that sup 9 = 1. For some
pesitive o ant L, let

-1

slx) = 1+ ynix,0)] .

j)

. 0 "t -1 ‘—1 ) *
Theoren 4 T 0 > . i)yl , then there 15 a numher | suth
IRAMER Sivels TP

*
rhat if 2, (1.4 2235 a oline,

- -
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Of course, u beina large simply assures us that the "dip" in s will
be low enough and abrupt enough.

Existence conditions can also be agiven for the more ceneral eauation

2
2 v hxw) =0,
dx
h satisfying
Hy - h is twice continuously differentiable in u and once in x;

h(x,0) = h(x,1) = 0.

Theorem 5 and Corollary 5.1 give conditions on h, in the form of
inequalities, which imply the existence of a cline. The principal require-
ments are that h(x,u) 2 s{x)f{u), where H¢ and Hg are satisfied, s is
sufficiently small on some interval (0,B), s 2 1 on (A,*) (where A > B),
s €1 on (B,A), B and A are sufficiently large, and A-B 1is sufficiently
small. The interpretation is that (0,B) 1is a "barrier"” region hetween the
two "communities" (=«,0) ana (A,®), and (B,A) 1is a "transition" zone.

Finally, in Theorem 6, it is shown that s' > 0 implies that the cline
is strictly increasing.

Results for a hounded habitat and for variable V or k: An existence

~ondition analogous to Theorem 4, but for a bounded habitat, is given in
Thenrem 7, Finally, conditions for nonexistence and for existence of clines
sre riven, for cases in which VI(x) and k(x) are variable, in Theorems 8 -
13, T e ennditions are similar to the rconditions on s 1in the foreaning

regsajte,

~7-
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Rerailts of the type praesented in *hrg paper were conjectured to he true
Leod. Levin (personal communication and [121). In 112!, the interpretaticr 1is
withir fhe context of the spatial variation in composition of ecoloagical
. ‘
e ties, rather than the context described here.

Lave assumed throughout that | - f(uldu < 0 {or the analoaous
comdrvren o on h), so that 0 is the favored state for all ¥. As menticne !
~arove, this is a major distinction from previous treatments nf ~linec, vhore
e favoryed state was assumed to change within the habitat. Tt asoes witrru-

b . " . s :
| saving that if ) f du = 0, then a cline exists even in a homogenenus
!
habirat; it it is structurally unstable, since a sligkbt change in the
sarction £ will destroy it. To ensure that a cline exists when = € 4y = ©
4t £hat a cline continues to exist when § 1is perturbed by any srall a~cun+,
1t s1ffices to have s, V, and/or ¥k ~wary in wavs descrited rty our theorv:
~o shall not pursue the details. The idea 1s that existence conditions ~ay be
given which remain valid when these functic-e are altered sijahtlv but
| arbitrarily.
E ;
' inally, let us explain the noticn ¢f c+ability which we s-all use
* :.uthout the paper. It is desianec o that rhe following statement 1g Svo=a,
i .
E NS - )
9roposit10n. Let ¢ he a stationary cubeolatinn ard O a stationary
‘ supersolution of (1.3) together with appropriate roundary conlitions, such
‘ toat £ ¢ ¥, and neither is an exact seluticn. Threr there exists a statle
il Pirrium solution ¢ of (1.3) retween ¢ anil I,
. 15 proposition is +#hs bhasisz For rnearlv all thre evictonce theryeme -
'0
\ R e ey, N stationary subselarin- o A8 01,3 0 e fyend en b 3
' rrranAns funcrinn on . D o N P N T R T, mmemy Faee e
N
r S s e, ; g *wice ~omtie et R L LI RIS I S B -
. -

1 omatiefine
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Nful Dbeing the .<pression on the right of (1.3), whilst at each endpoint £
in the interior of 2, ¢'(§ +0) » ¢'(§ -~ 0). For I bounded, we also
require ¢¥' £ 0 at its left endpoint, the opposite ineguality holding on the
right. An analogous definition holds for supersolutions.

If the habitat & is bounded, we shall define stability in the usual
¢’ sense. It was shown by Matano [13] that the proposition is true when
stability is interpreted this way. If the habitat is unbounded, the
proposition has only been proved for the following weaker notion of stability
(2].

Let ¢: R=* (0,1) be a solution of (1.1), and let T be a family of
functions (defined helow) with prescribed behavior for larae !xl|.

Definition. ¢ 1is said to be stable if, for every ;1, ;2 € T with

O£ ¥ L ¥ there exist elements 51, 32 € T with 51 < ¢ & 52 such that

~ ~

¥4 0 Y5 then the solution u(t;uo) of (1.1) which satisfies

u(O;uO) = ug has the property

. ¢1 £ lim inf u(t,uo) < lim sup u(t,uﬂ) < ;2 .
' t+o t+o
Here all the inequalities are understood in the pointwise sense.
To complete our definition of stability, we need only say which functicns
belong to the family T.
Pefinition: A function ¢ € C'(R;[0,1]) is said to belona to T if
(i) y({x) 1s an exact snlution of (1.3) for larae |xl|, and

(ii) p(=2) =0, yle} = 1,




Within our level of amnerality, it will not necessarily follow that the
stable solution we obtain is asyrptotically stable, in that small
perturbations of it return to it as t » ». In fact, in exceptional cases
there mav be many clines, and all we sav is that when one is perturbed by a
small amount, the subseguent evolution of u(x,t) never leaves a neighborhood
of the cline that was perturbed., A different cline in that same neighborhood
may be approached. We are guaranteed, however, that u(x,t) remains
between ¢ and < for all time, and so despite the possibility of many
successive perturba* ons through the course of time, it will never evolve to a
spatially constant distribution.

Clines can also be studied from the point of view of discrete, rather

+rar contiruous, selection-miagration models. A result of Karlin and MacGregor

117, frr exarple, implies that when the migration rate hetween colonies is
s=all ar i each colonv in :solation has two stable equilibrium states, then
~anw nlines exist., This is conceptually in accord with our results, which
saw, very rouahly, that certain spatial heterogeneities favor the occurence of

clines. Cnlonies with small interchange, when conceived in a geographical
settinag, form an inherently heterogenenus model.
The authnrs benafit«d areatly from Aiscussions with T. Nagylaki and

<, Lewvin.

i g e oSt S W s o R D1 =




2. Nonexistence Theorems.

We consider the problem

u" + As(x)f(u) =0 X € R, A >0,
(1) (2.1)
U('m) = 0, U(+°°) =1 ’

whers € and s satisfy the hypotheses Hg¢ and Hg listed in the
Introduction.

It is well kxnown that if s I constant, Problem I has no solution in
view of the fact that f; f(u)du # 0. Thus it is the variation of s which

may give rise to the occurence of clines. 1In the following theorem we give a

1nwer bound for the variation of s which is necessary to sustain a cline.

wWe define

ind we assume that

Trooraem 1, Let

Troblem T has no solution.
Sunnose, to the ~ontrary, that Problem T has a solution ¢.

S'(x) > 0 for larae neqgative values of x. Set

[P Lx

in which case




- -

L v . -

e <t

N

;'(xo) =0, ¢"(x0) <0, \;(xo) >a .

Multiplying (2.1) by u' and integrating over (-W,xo) we obtain

¢(x0)
fo s(x(p))f(¢)dp=0 , (2.3)

~

where x(y) denotes the inverse function of v (x). Since ¢' > 0 on

(-m,xo) this function is well defined. Since v(xo) € (a,1) (2.3) implies

that
[y stxte eIy > 0 .
Thus, using the bounds for s we obtain
s, [2 f(pac+ s j; flp)de 2 0

0 2

or

1
S, ja f(elde
‘s—' < ——a——-—-—-— ’ (2.4)
2 -fo £lg)d e

which contradicts our assumption about sji/s3:

Theorem 1 is optimal in the following sense: If positive numbers s,
and s, are given which vinlate (2.2), there exists a function
s : R > [s1,52] such that Problem I has a solution. We shall demonstrate

this in the following proposition: (see also [17]).




Proposition 1. Let s : R+ R" be defined by

where 0 < s1 ¢ sy and s1/sz satisfies (2.4). Then Prchlem I has a

snlution.

Proof. We construct a supersolution U and a subsolution u such that
u < u. Then the existence of a solution  such that u<yg u is ensured
by the standard theory (18].

We begin with the construction of a monotone subsolution. Let V, be

the solution of the problem

u" + s, f(u) =0 -0 ¢ x <0

1
u(==) = 0, u(0) = a

and let Vj be the monotone solution of the problem
(u" + s, f(u) =0 0 < x ¢ =

ﬂ\u(O) =a, u(x) =1 .

Both solutions exist, and can be constructed implicitly by guadrature. 1In

fact, multiplying (2.5) by u' and integrating, we obtain

1 2
5 (u'(x)}7 + s, f; f(s)ds =

which gives u' in terms of u for u € (0,al, since the integral is

negative in that range. Define

T




-

-

. -~ .-

S

(V1(x) x ¢ 0

= 4
kﬂvz(x) x>0 .

i
x
i

Then u will be a subsolution of Problem I if

u'(07) ~ w0’y . (2.7)

It follows from (2.5) that

. ' 2 oo ra
v, (0)}" = -s, j flvidv

and from (2,6) that

. 2 1
] -
v, (0} +s, [, flviav .

Thus, by (2.4)

T

[ 2 I
{V1 (011" < WV,

which establishes (2.7).

For a supersolution we take, for some £ € R, the function

ufx) =
w(x) x < &,

where w 15 the salution of the problem

w" T+ s1f(w) =0 x < 7

wl=0) = 0, wif)y =1

-1 -




This problem has a unique monotone solution (use the method outlined above
and Hf). By choosing £ < 0, we make U a supersolution of Problem I, and
by choosing (=-3) large enough we can ensure that u > u. This completes the
proof.

In the next theorem we limit the class of functions s for which we can

expect clines even further.

Theorem 2. Let s be a nonincreasing function of x. Then Problem I has no

solutioen.

Proof. Suppose again that Problem I has a solution ¢, and define Xg as in

the proof of Theorem 1. Then we obtain (2.3) which we now write as

[l

0
Jgsndn>ﬂ¢M¢=/a

s{x{z))f(e)dye (2.8)

with vo = #(xy). Since ¢ is monotone on (-m,xo) and ¢{(xy) > a, there

exists a unique point £ ¢ (~m,x0) such that ¢ ({) = a. Now utilizing the

monotonicity of s we deduce from (2.8) that

¥
a . n
-s(8) [0 flo)de € s(D) [ 7 f)ae
a
and hence
A
it fleyde 2 ;0 f(gragz20 .
. . . e
wryeer cratyadicts oy assumption abmut the sian of .

n




Thus for there to exist a cline, it is necessary that s be increasina

at some point of the domain. 1In fact, as we shall see as a corollary of the

following more general nonexistence theorem, this is still not enough: it
necds to increase sufficiently fast.
To prove this we consider the problem
u" + h(ex,u) =0
(11)
u(-=) = 0, uf{e) = 1
where we make the following assumptions about h.
1 2
A, he C (Rx [0,1]), hix,*) € C([0,1])
. B < i 1.
A2 lhxl < 1, lhu] < M1 lhuul M2 uniformly on R x [0,1)]

A3, h(x,0) = h{x,a(x)) = h{(x,1) = 0 for all x € R, a € C(R),

0 ¢ a{x) <1 for all x e R; h(x,*) < 0 on (0,a(x)) and

hix,*) > 0 on {(a(x),1).
A4. hu(x,O) < ~a < 0, hu(x,1) < =a < 0 for all x c¢ R.
AS. f; h{x,u)du < =-3p ¢ 0 for all x £ R.

Note that Problem 11 is equivalent with the problem

Au" + X hi{x,u) =0 A= 1/¢
(11') (2.9)

,u{=®) =0, u(x) =1 .
S

Theorem 3. Let h satisfy the assumptions A1-5. Then there exists an

* * * *
£ >0 (X > 0) such that if € € ¢ (A 2 A ) Problem (II) {II') has no

solution.

Proof. Suppose ¢(x,l) is a solution of Praoblem TI1', and let I he the

smallest root of the equation

~16-
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£lx,x) = a(x) .

In view of the boundary conditions, and the assumptions on a, such a roo*
will always exist. Note that £ will depend on A.
Before we proceed further, we introduce some notation. Choose & > 7

such that

(1

Jg h{x,u)du & -2p for all x € R
and define

R(£) = {(x,u) : |x=E] <o, & ¢u< 1} .

To begin with we shall show that there exists a A1 > 0 such that if

A2 k1, the graph of ¢ can only enter R through the bottom, i.e.

vi{x,A) €& on (-»,5-p1 ., (2.10)

Suppose to the contrary that  enters R at a point (E—p,u1), where

u, € (§,1). Then, because ¢" > 0 on (§{-p,8),
S E-p) < (1=8)/p
and hence

Jrf,-p Ihix,w (x,A))|dx < (1=8)Y/(p\) ., (2.11)
-0

-17-




18]
f— hix, (%, AN < th (x,2(x, AN ] + |h (x,0(x,2)}] ¢ (x,0)]
dx X u

< 1 + M1(1—5)/p

the inequality (2.11) implies that at each x € (-*,f{-p],
h(x,*(x,\)) 0 as A » @
and in particular
h{Z-p, ¢(E=p,X)) » 0 and X » = .

Thus, for A large enough,

and we obtain a contradiction.

We shall now show that there exists a X2 > 0 such that if ) » AZ’
graph of ¢ can only leave R through the top. This contradicts the

boundary condition at +* and thereby proves the theorem.

We multiply (2.9) by 2¢' and integrate over (-»,f£). This yields

(a(i
)

ra(g

n "nixter, e lag

= 2A )!h(x(¢),c)hi;> 2




)

c— -
—— .

. -

whoere

{
NN

Thus,

«(<) is the inverse of (x). Let

and it follows that

]

alt)

5
< oo [ IhiE, Y ldag - Zkoa(i)sunlhxlsupixw) - £l

2) fg(g)lh(§,¢)ld¢ ~2xpalg) .

we now aet, as long as e'(x) >0
. . c{x)
(o) = 2n [T hx(e), ) Ay

L s, eydy ~2h0a - 24 [F09 n(g e - 2xp(1-a)

-1
> +2h{-; h(5, V)47 - ol

> 2A(2p~p)

= 2Ap

choosing

and hence, that

Tamary .

a4

haial ]

o owhieh

eomation

Theorem 3 mav he regarded as

the existence of a transiti

Az = 1/2952, we achieve that

arx) > 1/8 x > %

the graph of ¢ leaves PR through the top.

o
£ 4+ h(x,u) =0 x + R

~4N0 =

A 2 x1. Then |x(¢) ~ &) < p

on

a nartial econverse to Theorem 6.1 of

on laver solution is established for




in which h(x,0) = h(x,1) = 0, hu(x,O) € =K hu(x,1) € -x for some «x > O

and in which it is assumed that for some xo € R,

]
fo hx,,u)du = 0 .

In our terminoclogy, a transition layer solution is a special type of cline,

one on which the change is primarily concentrated in a small interval. It is

the last condition which is violated here, and indeed we find that no cline

exists for small enough €.

We now return to our original problem. Consider

u" + s(ex)f(u) =0
(Ie) {

u(=>) = 0, u(®) =1,

where s and f satisfy, respectively, H and Hee In

s addition we assume

1
that s € C (R), and

ls'(x)] € m, x € R .

* *
Corollary 2. There exists an € > 0 such that if ¢ € ¢ , Problem Is has

no solution.

-2n-
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3. Existence Theorems.

Having established a number of necessary conditions on s for there to
exist a cline, .- shall now give two sets of sufficient conditions.
In the first theorem, we describe the effect of a local’zed inhomogeneity

in an otherwise uniform habitat. Thus, we assume that s is given by

s(x,u;g) = {1 + us(x,i)}-1 u>o0,¢£>0 |, (3.1)

1 . .
where © € C (R) has the following properties:

He1 8(x,E) = 0 for (x| » ¢
H82 8(x,£) » 0 for Ix| < & (z0)
H93 Max{8(x) : Jx| < £} =1 .

Thus, 2% denotes the width of the inhomogeneity, and ¥ is a measure of its

"strength".

Theorem 4. Let f satisfy Hf and let s be of the form (3.1) in which %

satisfies the assumptions HO. Then, if

2 a
AET > —

-1
" firyar} , (3.2)
8 ‘a

* *
there exists a number such that if u > y , Problem I has a solution.

*
1 depends nn A and § and tends to infinity if either )\ + ® or




Remark:

to one.

We

i

have normalized the function =s(x) so that its maximum is equal

This can be done by preorerly scaling the variable x. By (3.1), we

are assuming that s 1is identically one for |x] > £ but experiences a dror
; p P

in the center zone {x| < £, Tt will be clear, however, that the proof works

as well if

S

is any other positive constant for x € -f. Thus, let x(x)

be a smooth monotone function with x(x) = a > 0 for x < -f and x(x) =1

for

resulting expression for s. Then Theorem 4 and its proof are still valid.

Proof of Theorem, We construct a sab- and a supersclution. The subsclution :

X

>

e

Multiply the function on the right of (3.1) by x(x) and use the o

v we are going to construct will consist of three pieces: vy, vy, and vj.

For

conditions
is unique.

still to be determined. Observe that

V3

Let

prohlem

3
i

we take the solution of (2.1) on (3,®) which satisfies the boundary
v3(€) = a and v3(®) = 1. This solution clearly exists, and it

For

flu)

i5 1

and

.

vy we choose v,(x) =10 on (-»,p), where y ¢ [-£,0) s

w0t = 20 f(r)dr .
> - on '0,al. Then we choose for v, the solution of the

{3.3)

subselatinn of (2.1) on  (p,7), We shall show that if (3.2) is

o lavae enoaat,  usa' >N on In,T)  and v?(P) = n.




Clearly, since u" > 0 by (3.3) a necessary condition 1is

v, ' (5Y > a/st2gy

which implies (3.2). Moreover, integrating (3.3) we find

. -8 dx def
. - t 2 —_—— =
u' () u' (x) < M7 T Lo ) S (3.4)

Thus integrating once again, we chtain

a ? {v_ '"(3) - e} (£-p)

whence p 2 - & if

’ W

e S v _'"(5) -
\3 )

N
vy,

*
This can clearly be achieved by choosing u 2 u for some large u . It is

*
(?.4) that as & *» ® or { »+ =, y + x asg well.

clear however fror
The surersolution w  1s constructed out of two pileces wy and wsy.

wq 18 the solutinn of (2.1) on (-=,-%), which satisfies the boundary

Here
conditions w1(-”) =N, w’(—l) = 1. In view of the intearal condition on ¢
thie golation exists, and is uniaue. TFor Wy wWe choose w?(x) =1 on
AR
v oconstruction vix) < wlix) on R. Hence there exists a solution u
n¢ Prorler T cuch that v < u ' w,

I
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To construct other sufficient conditions for the existence of a stable
cline, we envisage a pair of piecewise continuous functions H(u) and H(u)

catisfving

H(D) = H(1) =0 , (3.5)
b — .
[y Hlw)au < 0 for all b« (0,1] (3.6a)
"V H(uldu > 0 for all ne [0,1) (3.6h)

‘b

together with solutions U(x), U(x) of

U” + H(U) =0, U(=) =1 , (3.7)

U" + H(U) = 0, U(-=) =0 . (3.8)

Representing the solutions in the usual way, one can see that U must vanish

at a finite value x, which may be chosen arbitrarily, and U 1 at a
finite value x. We consider U to be defined only on ([x,*®) and U onlv

on (=o,x].

Theorem 5. Let H, H, U, U be as above, with U(x) < U(x) where they

are both defined. Assume h(x,u) satisfies Wy and

hix,U(x)) ? H(U(x)) for U ¢ [0,M , (3.22a)

h(x,U(x)) € A(T(x)), for U e [0,1) . (2.0




- -

Then there exists a stable sclution of Problem (1I) with & = 1.
Proof: The function u(x) = Max{0,U(x)) 1is a subsolutizn, ard
ai{x) = Min{1,i "' 3 supersolution. The conclusicn fcollews immediately.

The followinag coro..ary treats the case when h can be comnared, in a
certain way, with functions of the form s(x)f(u), where s and f
satisfy He and  He, reaspectively,  We picture the habitat as reinc Aivicei
into four regions, the first twe beinao {i) the interval ({(-»,0), where the
population exists in a ¢ ate nesr u = 9O; and (i:)} the interval (A,»} for
some A > 0, where u 1is near 1. The interval (0,A) between these two
ponulation states is divided into (iii) a "barrier" region (9,E), whereirn
tre selection strenath is reruired to be small enough, and (iv) a "transition”
interval (B,A) of lenatk T = A-B, which is simply assumed to be short
enough., In region (ii), the selection strength must be large enouch tut no
strona reauirements are imposed upon it ir (i) and (iv).

The craitical ratio

’1f(u)du
‘a

Y2 {3.10)
-fof(u)du
will play a crucial role. DMNote that 0 <y < 1.

Corcllary 5.1. Let 1y < y. Suppose hi(x,u) » s(x)f(u) where s an4

£ satisfy Hg and Hg, respectively, and in addition for some nonneaat:

numbevs B, T, and g,

s{x) ~ o, x (==,0)
s{x) s , x ¢ (0,R)
[(3.113-3°
s(x) =« 1, x o (R,R+T)
s(x) * 1, x ¢ {R+T, @),




Also for some neaative number -¥, we assume that

hi{x,u) & s{x)f(x) , x €& -X ,

where s and € also satisfy B and Hg, 0 < Sy ¢ s(x) « s, for x < -X,

and

;
N (3.12)

Y Dbeing defined by (3.10) with ¢ replaced ™ ¢, Then there are numbers

* *
‘ B (y,0), T {y,0) such that 1f

N - * - IS - *
B> A28, e T2 e e s T2 e Yy (3.13)

there exists a stable solutior of Prohlem (11').

Remark. Formulas for suitahle F and 7T will be qgiven in Propositien

5.1. It clearly fnllows from the construction helow that

+
5 Ihhaw T o oy =0 For o2y
’ .
1
) It man alen he chag- «b a0
'!
’ .
' 11~ ‘ L0y 2 .
. -
"~
\
., Dyee €, T PR rocyeene 1o droorerm far the ecase A < 1; the
- b . . v : 3 - 3 "’/3
N aereral case cac Y v b s vr e Yy rograling, > A Ve
]
o7
Y
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For some w

{0,a/2}, 1let

H(uY = {'\1f(u), . 0,w)
]
¢ yf(u), u ¢ (w,a=w!
1
L (u) , uc¢ fa-w,1) .
oy = 0, fg HuYdu = y e fqu - f4u > 0, aine Y < Y. Therefore there
1
exists a valile w, < (0,a/2) for which H(u)du > 0 as well. For w = wy

{x) be the soluticn of (3.7) satisfyina U0

he the intervals on which U ¢ (w_, a - w_ ) and

resnectivelve Then

we so0 that (3.12)

*
(0,R ) an?d

[
%
S

(3.%1) for R=®» , T =T implies (3.9a).

s1f(u), ! th,a)y
Pefining H(u) = o
a_ fluy, aos fa, 1y,

implies (3.6a); and if U is the sclutior of (3.8)

satis€yins U(=X) = 1, (3.9h) will he satisfied.

Ty oMo “', T o= T*, the conclusion follows from Thenrem 5, Now let
ooan m  beoary numhora satisfvina (3,13) (4 still eonal to 1)}. Then
oveir s e o Mnoe oty - 02t e Ty e gee that (3,11) ctill hold, with the
¢ ~tivreala mernsroned khove ghifted ta the right hy the amount Xg. This

vy be ISt as i ke pranf of rornllary 5.1,
-1 . . . . .

Ylyme €] . Thor o rhme fallowing expressions vield

T E e e e samgiresmant 3 n€ Sarnllary 1:




- -y

B e diinins SR o
 —————— - -

-1
5= (2 - 20 (F0w 0/ e a7
2 1 1

-1
T = w (v, .

s eve  F(a,B) T (2 fi|f(u)!du)1/2.

proor: Let ¢ < 0 be such that Ulc) = 0. Multiply (3.7) by U' and

irteuyrate from ¢ to 0, to obtain

u'(o) > F(O,w1)o1/2 .

*
ror x £ (0,B ), U" » 0, so ut(x) 2 v'(0), and

1
ulx) > W, + X F(O,w1)o /2 .

* * .
Setting x =B , U(B) = a - W we obtain

-1
* 1
B < (a - 2w, )(F(0,w,)0 & (3.14)

*
Working from the other end, we find U'(B + T ) = ¥la,1), and for

* * *
>::!RI“+T]I

*

* * * * *
UGB 4T ) - M(B +T - x) U SUNE T

: . * * * .
~here =M = inf f., Integrating from =R to R + T and usina the facts

* * *
thar (P ) = a - w1, mer + T Yy = a, we get

-Na-




* 1 «2
F(a,1)T -—Z'M’I‘ < w

*
1 < F(a,1)T ’

hence

2Mw
wa,n T cr < w R(a, 1) 11 - (1 -——-’——2-)‘/21
(F(a,1))
< 2w1(F(a,1))_1 . (3.15)

It is seen from (3.14) and (3.15) that the values of B and T given in the

proposition satisfy (3.13).

)
P
2
]
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4. Properties 2 solntions.

We kegin with a monotonicity theorem,
Theorem 6. Let v be a solution of Problem I in which s and f

satisfy, respectively, H an? He., Then if s 1is nondecreasing, ¥ is

3
strictly increasing.

Proof. Without loss of agenerality we may set x = 1. Let

X, = inf{x € R: ¢'" >0 on (x,°)}

and let us assume that x, > ~®. Set ¢, = ¢(x,). Since ¢'(x,) =0,

;"(xz) 20, and u =z a 1is a solution of equation (2.1), it follows that

¥y € (0,a) and  "(x5) > 0. Let

) = i {x < ! ’ .
X, infix x2 ' <0 on (x xz)}

In view of the boundary condition at x = -~o, x, > - ©», Set £ = ¥lxq).

Then ., € (a,1). Denote by x4(;) the inverse of (x) on (xq,%y) and by

xzrc) the inverse of J(x) on (x.,®).

21

If we muleiply (2.1) hy ' and intearate over (x1,x2) we obhtain

S(x1($))f(¢)d =0 , (4.1)

and if we intearate over (x _,®):

-0 -
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Equation (4.1) vields

A

, 1
[T st IEalas = [ T stx (e I E(9) lav
~r2 a 1

and hence, by the monotonicity of s

s(3) fi2|f(¢)|d¢ < s(E) f:1|f(¢)|d¢
whence % is the (uninue) zero of the equation
F{x) -—a =20 (4.3)
on (XT'XZ)' Thus, since s > 0
ﬁlef(¢)|d; < j;’lf(;)|d¢ . (4.4)

Similarly, (4.2) yields

-a

~
™

. 1
25(x2(¢))|f(v)ld; =, stx, (e E(e) 1y

ard hence

ra
4o

1
[fe)lde> stn) [ [fle)]ay
¥ A

e{r)

wWoare : is the {uninue) zoern of (4.3) on fxz,w). Thus

etk 2n emir R £ R < Sy A AR e S L gaa

I m T g G F e

— e 1+ O — .




[2 1terlae > [Mgerlae . (4.5)
¢2 a

i
E Together (4.4) and (4.5) imply
I

% 1
‘ . fa [£(¥)lav > falf(¢)|d¢ ,

which would mean that Y, ? 1. This is impossible.

Next, we turn to the question of uniqueness. We shall show by means of
the example discussed in Problem 1, that we generally cannot expect a unique
solution (see also [17)).

+
Proposition 2. Let X =1 and s : R+ R be defined by

whence 0 < sq < So* Then

(1) if Sq/s9 = Y, Problem I has precisely one solution

I (ii1) if Sy/85 < Y. Problem I has precisely two solutions.

E : Proof. Let v{(x,a) be the solution of equation (2.1) on (-»,0) which

f ?‘ satisfies the boundary conditions v(=»,a) = 0, v(0,0a) = a. Then for each
1 & te [0,1], v(*,a) is well defined and
»
| )
; ’ . 2 a
! {vt(0,a)}" = -2s, fo f(r)dar, 0 < ac< 1 .
|
!
F .
f ( Similarly, let w({x,a) be the solution of equation (2.1) which satisfies the
I i
. boundary conditions v(0,u) = a, v(e,a) = 1. This solution is well defired
? for T < a <1, whence & is determined by /' f(r)dr = 0, and
a




(wt (0,00)° = 2s, f; f(r)dr o <a <1 .

Clearly the coi.osite function

is a solution of Problem I if

v'{0,a) = w'(0,q). T<ca€1 . {

o It is readily seen that this equation has one root (a = a) if Sq/89 = Y,

and two roots a.,q, (a < a, <acua, < 1) of s4/s5 < Yo

D

-1




5. Bounded domains.

In this section we consider the problem

u" + As(x)f(u) = 0 -1 < x <1
(II1) .
Lu'(-1) = u'(+1) =0 .
Clearly this problem has three trivial solutions uy = 0, u, = a and ujg = 1.

u, and u3 are stable and wu, is unstahle. We shall inquire into the
existence of stable nontrivial solutions. !
To begin with we shall generalize Theorem 4. However, before we can

state it we need to introduce some notation. Consider the problem

Jut o+ AElw) =0

{

Su{l) = a, u'(1) =0 .

This problem has a strictly increasing solution u(x,A) for A > XO > 0. Set

W)Y = ";“’M f(r)dr A AL .

/

Clearly «€(M)~u0 as A~s)  and (=) =j; f(r)dr .

Next, consider the problem

~
)
t
" Su" o+ Af(u) =0 (5.1)
! wlt) = 1,  u'(1) =0 . (5.2)
- *
> In view nf tre inteqral condition on f there exists a A > 0 such that if
\
& * ’
. W ¢ ', this problem has a strictly decreasina solution (which is not
S uniqe).
r

S

-34-




Theorem 7. Let f satisfy He and let s be of the form (3.1) in

which § ¢ (0,1) and § satisfies assumptions HG'

3

Suppose i and I satisfy the following inequalities

AE2 (A (1-5)2) > % a? (5.3)

A(1=-2)2 3 max{AO,A*} . (5.4)

* *
Then there exists a constant u such that if y > u , Preblem III has a

*
smlution. If A +» then 4 =+ «

Proof. Wwe proceed as in the proof of Theorem 4 constructing a sub-
scluation v and a supmersolution w such that v < w,

Tor v, we now take the solutin of (2.1) on ({,1) which satisfies the
bcundary cornditions v3(i) = a and v3'(1) = 0. This solution exists in view

nf {2.4) and it can be seen by a scaling argument that
v, (03 = 260107 (5.5)

ro o in the nroof »f Theorem 4 we reauire that

v
)
‘ 2 )Y > az2s
) 3
|
Ti Lo, traetter wiet SR} wields (9.2),
}! RS Al SETSL IR (I S et AN b Kalala e vy and V5 1s the same as in the proof

N .




F"T"’"

The supersolution w consists again of two pieces Wy and  wy.

Again, w, = T on [-§,1] but w, is now the solution of equation (2.1) on

(-1,~£) which satisfies the boundary conditions w1'(—1) = ¢ and

wx(-i) = 1. It is a simple matter to transform this problem to (5.1),

(5.2). By a appropriate scaling we find that the functinn w,

>

exists 1f the

inequality (5.4) is satisfied.

In view of the construction v < w on ([~1,17, This completes the

proof.




€. Variable migration and/or carrying capacity.

We now consider the problem

K2 OVZ(0ut) ! + 2AK2 (x)V(x)E(u) = 0, x e R, A >0
(IV) (6.1)
u(-=) = 0, u({®) =1 ,

: 1
where f satisfies Hg, k and V are in C'(-%,®), and k(x) and V(x)
have positive lower bounds. As we shall see, many of the resul:s about
Problem IV can be deducel from the results obtained about Problem I. !

Let

y = T(x) gef fx - dr

k (r)vz(r)

1. :
Clearly T maps R onto R and its inverse 1 is well defined.

Introducting y as the independent variable into (6.1), we obtain
u" + As(y)Yf(u) = 0, y € R
where the primes now denote differentiation with respect to v, and
sty) = 2k (73T Ty (6.2)
Let

* ) 4 3 * 4 3
Sy 7 inf k (x)V (x) and s, = sup & {x)V (x) .

R ' R

Then the followinag result is immediate from Theorem 2:
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Theorem &, Let

* e
s, H f{u)du
—_—D ————

* ra
sy o f(u)du

Then Problem IV has no solution.

It is also obvious from Proposition 1 that Theorem 8 is optimal. Next,

we observe that for any x4, X5 £ R.
4 3 4 3
' - X = -
k (x1)\ (x1) k (xz)l (x2) s(y1) s(yz) ,

where Y, = T(xi) (i = 1,2). Thus if k4 (x)v3(x) is nonincreasing, so is
s. Whence by Theorem 2, we have proved the followina.

Theorem 9. Let k%(x)v3(x) be a nonincreasing function of x. Then
Problem IV has no solution.

Finally, we shall show that like s, k%3 has to increase somewhere

sufficiently fast for there to exist a solution. Consider the problem

ro.2 2 2
Dok ex)VT(ex)u']l! + 2k (ex)Viex)f(u) = 0 ,
(IVF) /
) S u(=ey = 0, u(e) = 1,
"v
‘ Then writing x' = £x, we can reduce this problem to Problem IV with

A= 1/62, and hence tn Problem T with y = 1(x'), and s defined hy

|
} (£.2). Thenrem 3 now vields the desired result.
{

*
!

*
f Theorem 10. There exjsts an £ > N snch that if ¢ < ¢ , Problem
A IV ras nn selurinn,

\ -
Next, we turn tn the gquestrion of existence. Tt is here that the results

for Prohlem 1V hernme enmoyhat different, and in fact stronger.

o e




To bheain with, we introduce the two-parameter family ~f functions

Vix,u,i) = i1+ w0, w0, £ 0, (6.3)

where & ¢ C1(R) is as in section 3.
Theorem 11, Let f satisfy He, and let V be of the form (6.3) in

which - satisfies assumptions H Let k ¢ C1(R) satisfy 0 < k(x) < 1,

6°

and k(x) 1 for |x! > ©. Then for each X > 0, % > 0, there exists a
u* > 0 such that if u > Lz*, Problem 1V possesses a cline.

Theorem 11k' In the hypotheses of Theorem 11y and in (6.3), replace the
=embknl V. by ¥k and % by V. Then under the new hypotheses, Problem IV
possesses a cline.

Proof. We aive the proof for Theorem 11, only, as that for Theorem My

is the zame. Throughout, we shall keep £ fixed, and we shall write

Vo= Vix,w) and % = (x). Define
+ -7 ir 5 dr £
oy = —— f> = ~ =g+ {7 8(n)dr ;
0 . 2 2 ‘0 V(r, ‘0
Vv, ) (r.u)
- N A 0 4
2Ty = Y 3 ’ Y

-

0
S, e—— =&+ u [ 8(rar .
v, ) > Vir. 2

2~ in tre rroof of Theorem 4, we construct a subhsolution v which

cmonte cf thraee pieces: vy, Vs, and vy. The last piece, vi3» is the
. *
vt fara, wity ] renlaced by =,
0 o ve rragen an that
+ -7 12 -1
"Tofiryar) (t6.4)

o M T
? ‘A
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- e,

where nf = nt(u1). Then for u ? u1,

] + + -
v3(n ) > a/(n +n)) .

Next, we choose for v, the solution of the problem

{'U" = As(y,u)IM (y < n%y

u(n+) = a, u'(n+) = v3'(n+) .

Then there exists a u2 > 0 such that if yu > u2,

+ + + +
p=infly <n :v, >0 on (y,nJ)}>n = (n, +n,) .

2 1 1
We now define wvq{y) =0 for -» ¢y < p. The composite function v is the
desired subsolution.

For the supersolution w, we can take the same function as in the proof
of Theorem 4, with ~f replaced by -n"(u).

Thus if p ? u* = max{u1,u2}, there exists a subsolution v and a
supersolution w such that v < w on R. This implies the existence of a
stable cline.

Remarks. 1. In the case k = 1, it follows from Theorem & that the

parameter U in Theorem 11v must satisfy

Y —_
and hence 4y 2 (1/Y)1/3 -

1.
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2, It is clear from (6.4) that if A + 0, then u1 + o and hence

Next, we ¢..sider (6.1) on a bounded domain:

((kz(x)vz(x)u')' + Akz(x)V(x)f(u) =0, -1 <¢<x <1,

(V) {
Lu'(—1) =0, u'(+1) =0 .

Theorem 12. Let f satisfy He and let V be of the form (6.3) with
0 ¢§ <1 inwhich © satisfies assumptions H . Let k ¢ c'(m) satisfv

0 < k(x) € 1, and k(x) = 1 for |[x! » £, Then provided
2 *
A(1=E) > max{xo,x }

* *
there exists a u > 0 such that if yu > u . Problem V has a cline.
*

Recall that AO and A were defined in section 5.

Proof. Following the proof of Theorem 11, we transform equation (6.1)
on (=~1.1) to equation (2.1) on the interval I = I,V I, U 15, where

- - - + + +
I,=(mn =0=8), - n), I, =1[-n,n], I;=(n,n + (1-E)) .

On I, and 15, Wwe choose the same super, resp subsolution as in the proof

of Theorem 7, and on I, we choose them as in the proof of Theorem 11.

1 4 e e S A o




7. Clines on a rounded habitat 1I.

In this section we prove the existence of clines in bounded habitats by a
method which is different from the one used in the previous sections. There
our main tool was the maximum principle; here it is a variational argument due

to Matano {13]. He used it to prove that the problem

4/Au + f(u)
Ju
N

3n

in 8

]
=]

=0 on 30 ,

where 2 is a bounded domain in RY(N > 1) with smooth boundary 3%, and

9/9n is the outward normal derivation on 32, could have clines if {
consisted of subdomains Qi which were connected by sufficiently narrow
passages. The idea was that in this manner, the passages offered an ob-
struction to the migration of the individuals bhetween the subdomains, thus
allowing them to maintain different states.

The problem considered in section 6 is analogous to the one considered by
Matano: the ohstruction now being caused by a diminished mobility V or
carrying capacity k.

we consider the ageneral nroblem

(DfxYu')' + As(x)f(u) =0 x e Q= (=-1,1)
(V1) (7.1)
u'(=1) = a, u'(+1) = 0
and we assume that the function f satisfies, in addition to the hypotheses

li, the normalization:

{v=a)€(n) « {u-a)? for 0 < u < 1V




About D and s we make the assumptions:

1+ —
Aqe D,s £ () for some v e (0,1)

An. 0 < min{D(x) : x £ £} and D(x) <1 on &
0 € minis(x) : x € @} and s(x) <1 on & ,
Age n{x) =1 and s(x) = 1 on 91 92 ’
where 91 = (=1,-2) and QZ = (£,1) for some £ e (0,1). Still following

Matanc, we define

(g-a)ax < 0, [, (g-a)ax > 0}

/r 0
| 2

ansi we introduce the functional J : H'(Q) + R:
1 2
32 = [z 000 {g (0} = As(xIF(g))dx
where

Flgy = [2 f(ryar .

~

-

Recall that

1
r

- Jaf(r)dr _F()
-f:f(r)dr F(0)

L e ey -

{, Lemma, TLet f satisfy the hypotheses HF and Hf*o and let D and
]
. 5 =at:13{y the assumptins A1 - 3. Suppose there exists a function

w ¢ ') such that

i 4




ey Ve

J(w) < AF(0){(1-E)min(1, —) - 2} .

Then Problem VI has a stable solution in the set R{-,+]. The proof of this
result is nearly identical to that of Theorem 6.2 in [13], whence we omit it,
To obtain explicit conditions on &, X, D and s, which ensure that

(7.2) is satisfied, we consider the function

0 -1 € x € =§
(x) = 1 (1 + 5) £ < < £
w } > G x
\ 1 E<x <1,

We find that J(w) satisfies (7.2) if §, A and D satisfy the ineguality

2
5 ffg D(x)dx € MAEF(O)[(1=E)min(—=—=, 1) = 1+ Y = (WE] . (7.3)
N (1-6)72

Thus we have proved the following existence theorem.
Theorem 13. Let f satisfy hypotheses He and Hf'. and D and s

assumptions A1 -~ 3, Then, if X, £ and D satisfy the inequality (7.3},

Problem VI has a cline.

Remarks. 1. Note that beyond the assumptins A1 - 3, no conditions on

s are required.

2. For the equation discussecd in section 6, the condition for the

existence of a cline becomes an upper bound for the integral
IEE viokioax

which demonstrates again that in this context, the roles of V and k are

interchangeable.
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whence Xo =

let y=1, and £ = 1/4.

L 174 1 R(X
: ,_1/4D(x)dx <3 F(O)R(X)

(411/3)2 and

Then (7.3) becomes

3
0<>\<2>\0 '

f A for 0 < X € Xy
R(A) =

YV o3n, - 23 f
\3 0 or

X

0

3
< = .
< A 3 Xo

i
'
I
i
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